[1] L. K. Shrivastav and R. Kumar, “Empirical analysis of impact of weather and air pollution parameters on COVID-19 spread and control in India using Machine Learning Algorithm”, Wireless Personal Communications (SCIE, Impact Factor: 2.01), Springer, 2023, DOI: https://doi.org/10.1007/s11277-023-10367-7.
[2] L. K. Shrivastav and R. Kumar, “Adaptive trio-ensemble deep neural network for high-frequency stock price prediction”, Wireless Personal Communications (SCIE, Impact Factor: 2.01), Springer (Under process, preprint version available), 2022.
[3] L. K. Shrivastav and S. Jha, "A gradient boosting machine learning approach in modeling the impact of temperature and humidity on the transmission rate of COVID-19", Applied Intelligence, Springer, 2020, https://doi.org/10.1007/s10489-020-01997-6
[4]. L. K. Shrivastav and R. Kumar, "Gradient Boosting Machine and Deep Learning approaches in big data analysis: a case study of stock market", Journal of Information Technology Research, IGI Global, Volume 15, Issue 1, Article 1, 2022 DOI: 10.4018/JITR.2022010101.
[5]. L. K. Shrivastav and R. Kumar, "An Ensemble of Random Forest Gradient Boosting Machine and Deep Learning methods for Stock Price Prediction", Journal of Information Technology Research, IGI Global, Volume 15, Issue 1, Article 2, 2022, DOI: 10.4018/JITR.2022010102.
[6] L. K. Shrivastav and R. Kumar, "High Frequency Stochastic Data Analysis using Machine Learning Framework - A Comparative Study", Cognitive Computing Systems Applications and Technological Advancements, Apple Academic Press, Taylor & Francis, pp 1-29, 2021.